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We study the (3x+ 1)/2 problem from a probabilistic viewpoint and show a 
forgetting mechanism for the last k binary digits of the seed after k iterations. 
The problem is subsequently generalized to a trifurcation process, the (Ix + m)/3 
problem. Finally the sequence of a set of seeds is empirically shown to be equiv- 
alent to a random walk of the variable log_,x (or log3x) though computer 
simulations. 
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1. INTRODUCTION 

M o r e  than  60 years  ago  a con jec tu re  conce rn ing  a very s imple  recur rence  

was i n t roduced  which is usual ly  k n o w n  under  the n a m e  of  the ( 3 x +  1) 

p rob lem,  171 but  is cal led in the fo l lowing  the (3x + 1)/2 p rob lem.  4 It can  be 

s ta ted  as follows. We  cons ide r  x , ,~  ~ § (pos i t ive  integers) .  The  next  te rm 

x,,+~ in the recur rence  is defined by the re la t ions  

if x,, is even:  x,,+ l = x, , /2 
(1) 

ifx, ,  is odd:  x , , + l = ( 3 x , , + l ) / 2  

F o r  example ,  s t a r t ing  f rom the seed X o = 7 ,  we get 7, 11, 17, 26, 13, 20, 10, 

5, 8, 4, 2, and  the sequence  ends  in the cycle 2, 1, 2, 1 ..... The  fo l lowing  
con jec tu re  was put  forward.  

i PMMS/CNRS, 45071 Orl6ans Cedex 2, France. 
-' University of the Philippines, Manilla, Philippines. 
3 UFR Facult6 des Sciences, 45071 Orl6ans Cedex 2, France. 
4 The historical name is the (3x+ l )  problem. For logical reasons and especially since we 

generalize to the trifurcation case with the (Ix+m)/3 problem, we feel that it is better to 
introduce into the name the denominator of the recurrence relation. 
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Conjecture. For any seed Xo e N + the sequence ends on the cycle 
2 ,1 ,2 ,1  ..... 

After 60 years of effort no proof has been given. On the other hand, 
no counterexample has been found and numerical investigations have 
proved that the conjecture is true for all seeds Xo up to 5.6 x 1013. ~ll 

Recently, in attempting to understand this conjecture some authors 
have studied statistical properties of the mapping cz-61 and more precisely 
the relation between this sequence and a random process (basically a coin- 
tossing game). For a good review on the problem the reader is referred to 
ref. 7. 

Let us be more precise on the relation between the sequence and the 
coin-tossing game. We first introduce uo=log2xo  and consider a great 
number of integer seeds Xo (with all Xo ~ 1) randomly drawn in such a way 
that uo has a density distribution. On each seed Xo we perform k iterations 
according to the rules given by (1) (k must not be arbitrarily large and we 
will come back to this point in Section 4). We obtain a density distribution 
for the set of uk = log2 xk. Now, starting from the same distribution of uo, 
we play the following chance game. We toss a coin. If a head is obtained, 
we take u, ,+~=u,-1,  which corresponds to the "even" transformation 
x,,+~=x,,/2. If tail is obtained, we take u , , + l = u , , + L o g 2 3 - 1 ,  which 
corresponds to the "odd" x , + l =  (3x,, + 1 )/2 transformation, where, since 
we supposed x ,  large enough, we can neglect Log2[1 + ( l /3x , ) ]  ~ (1/3x,,) 
(log 2 ) -  ~. 

The density distribution of the u,, obtained in the two processes, 
namely the deterministic one and the random one, are empirically found to 
agree; see Section 4 for further details. Preliminary results have been given 
in ref. 2, while related results can be found in refs. 3 and 6. 

Of course this result is not very surprising for the statistical physicist. 
The deterministic process corresponds to a microscopic model where the 
exact "trajectory" can be computed (here in a rather simple way) provided 
we know with great precision the value of the initial number. As in a real 
microscopic trajectory, two seeds differing by one unit (a small quantity, 
since x,, is supposed very large) have completely different trajectories. But 
here, as in many problems, we want to compute, not one single trajectory, 
but an ensemble. Consequently, the precise dynamic can be forgotten and 
a probabilistic approach can be introduced: here the equiprobability of the 
steps of size - 1  and logz 3 -  1 corresponding to the "even" and "'odd" 
iterations. 

The purpose of this paper is twofold. First, we want to exhibit a 
mechanism which shows how the last k bits (for a seed written in base 2) 
are forgotten in exactly k iterations. Second, we generalize these results to 
more complex mapping involving three different cases for the iteration 
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according to the value of x,, modu lo3 .  Descriptions of computer  
experiments follow. 

2. M I X I N G  M E C H A N I S M  

We first write the number  in base 2. The last bit is 0 or 1. If it is zero, 
the number  is even and can be written 2j. The first iterate is j and since j 
is odd or even with equal probabili ty,  a priori, the proper ty  that  the last bit 
is zero is forgotten in one step. If now the last bit is 1, the number  can be 
written 2j + 1, its first iterate is 3 j +  2, and the proper ty  that  the last bit is 
one is also forgotten in one step. In both cases the only needed hypothesis 
is that  the second bit j (second starting from the last one) has the same 
probabil i ty to be 0 or 1. 

What  about  the mechanism for the two last bits? Then the initial 
number  can be written 4j; 4j + 1; 4j + 2; 4j + 3. Let us call these numbers  
respectively "0," "1," "2," "3" numbers  (the name being the value of the 
number  modulo  4). After one iterate a "0" number  gives 2j, which is a "0" 
number  i f j  is even and a "2" number  i f j  is odd. We write 

"0" ~ "0" or "2" with equal probabil i ty 

A "1" number  written 4 j +  1 gives, as a first iterate, 6./'+ 2, i.e., again a "0" 
number  i f j  is odd, and a "2" number  i f j  is even: 

"1" ~ "0" or "2" with equal probabil i ty 

The first iterate of a "2" number  of the form 4j + 2 being 2j + 1, we find 

"2" ~ "1" or "3" with equal probabil i ty 

In the same way a "3" number  4 j +  3 gives for the first iterate 6j + 5 

"3" --, "1" or "3" with equal probabil i ty 

The situation can be summed up in the matrix M4(I , J )  giving the 
probabil i ty than an " I "  produces a " J "  number  after one iteration: 

M4(I, J) = 

J = O  J = l  J = 2  J = 3  

i = o  1/2 1/2 
i = 1  1/2 1/2 
i = 2  1/2 1/2 
1=3 1/2 1/2 
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One iteration is not enough to erase the two last bits of the seed. Let us 
consequently iterate a second time. To find the matrix "I" --* "J"  (after two 
iterations) we have simply to square M: 

M,~=�88 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

All the elements of the matrix are 1/4, indicating an equiprobability of the 
last two bits, irrespective of their initial values. 

If we want to treat the three last bits we must consider the following 
matrix Ma(L J), when I and J run from 0 to 7: 

Ms(L J ) =  

J = O  J = l  J = 2  J = 3  J = 4  J = 5  J = 6  J = 7  

1/2 1/2 I = 0  
I = 1  
I = 2  
I = 3  
1 = 4  
I = 5  
I = 6  
I = 7  

1/2 1/2 
1/2 1/2 
1/2 1/2 

1/2 1/2 
1/2 1/2 

~/2 i/2 
~/2 i/2 

This time we check that 8M~ has all its elements equal to one. 
We can give a more precise meaning to these results. For example, 

consider all the numbers which, written in base 2, have the same three last 
bits, for example 101. They can be written as 8 j+5 .  We know (see the 
bijection theorem in ref. 2) that they all have the same parity for the first 
three iterations. Indeed 8 j + 5  is odd and gives 12j+ 8, which is even; this 
last number gives 6 j + 4  also even and finally 3 j+2.  If n o w j  takes all the 
values between 0 and 7, we check that 3j + 2 modulo 8 takes the respective 
values 2, 5, 0, 3, 6, I, 4, 7. 

To obtain the equiprobability for the eight numbers 0, 1 ..... 7 formed 
by the three last bits, as pointed out by the form of the M~ matrix, we 
must suppose that besides the three last bits, the three next most significant 
ones are taken randomly (i.e., j in 8 j+  5 takes with equal probability the 
values 0, 1, 2 ..... 7). Now we check that the same property holds for any 
number 8 j+  co, where, instead of 5, ct takes all the values between 0 and 7. 
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The generalization to k bits of these properties can be precisely 
stated in the following way. For ~t in Ak = {0, 1 ..... 2 k -  1} we consider the 
ensemble S~ consisting of 2 k integers of 2k bits given by 

2kj+ 0t 

where j runs over all elements of Ak.  Consequently, each element of S~ has 
the same k last bits. 

T h e o r e m .  (i) For each ~eAk ,  after k iterations applied to each 
element of S~ the last k bits of the resulting 2 k integers form a complete set 
of values in Ak. 

(ii) The 2kx 2 k matrix M2k is such that 

(M2,)  k = 2-kJ2k 

where J2k is the 2kx 2 k matrix with all entries equal to one. 

To prove this, since the last k bits of the initial numbers are the same, 
the 2 k numbers experience the same sequence of even-odd iterations. We 
suppose that among these k iterations, I are odd. Moreover, we ca l l / / t he  
kth iterate of 0t. The kth iterate of 2kj + ct is 3(/' + ft. To obtain the last k bits 
of the new numbers we must take this last value modulo 2 k. It is enough 
to show that 3~/ modulo 2 k take all the values 0, 1 ..... 2 k -  1, since the 
addition of fl will simply introduce a cyclic permutation (in fact a rotation 
if 0, 1, 2 ..... 2 k -  1 are located on regular polygon inscribed in a circle). 

Now consider the numbers 3~j and 3~L We suppose j > l .  Can these 
two numbers gives the same remainder after division by 2k? We should 
have 

3 ( j = r + 2 k J ;  3 t l = r + 2 k L  

and consequently 

3t ( j  - I) = 2k(J  - L )  (2) 

and we see that the first member of (2) must have a factor 2 k. Since 3 ~ is 
an odd number, this factor must be present in j - L  But the highest value 
of j is 2 ~ -  1 and the smallest for / is zero. We consequently cannot have 
the two numbers equal modulo 2 k and we recover for the value modulo 2 k 
of the iterated numbers the elements of Ak. To prove (ii), multiply (g2*) k 
on the left by a row vector with entry 1 in column ~t and O's in all other 
columns. The resulting row vector is found by adding up 2 k row vectors, 
each of which has a single nonzero entry 2 -k in some columns, and the 
columns are given exactly by the last k bits of the kth iterates of (1) on the 

822/76/I-2-48 
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elements of S~. Now by (i) all these columns are distinct, so the resulting 
row vector has all entries equal to 2 -k. But this vector is just the ctth row 
of (M2k) k. Thus (ii) follows. 

The theorem shows that after k iterations the last k bits are "forgotten," 
meaning that we have with equal probability the 2 k values of Ak. 

We understand now the connection between the coin-tossing game 
and the deterministic sequence. In fact the connection is already apparent 
in the bijection theorem. This theorem states that if we consider all seeds 
with N bits, we have a 2N-element set. Consider the sequence describing N 
iterations for each of these elements. The set of all sequences (odd-even,...) 
has at most 2 N elements (it could be less if two seeds give the same 
sequence). In fact each seed gives a different sequence and there is a bijec- 
tion between the 2 N seeds and the 2 N sequences. Proofs of the bijection 
theorem can be found in refs. 2 and 7-9. This means that the following 
game can be played. 

We select at random an N-bit seed, but give only the information on 
the parities of the N first iterations, asking if they have been produced by 
a coin tossing or by the (3x + 1 )/2 sequence. It is impossible to decide. This 
result was stated for the first time in refs. 8 and 9. Now what about giving 
more than N iterates of the parity sequence (i.e., a series of more than N 
odd-even)? The answer is subtle. 

If one is provided with a long series, the cycle O, E, O, E becomes 
apparent if the sequence has been obtained from the deterministic process. 

In fact, we do not need such long sequence if we are provided with 
the information that, possibly, the sequence has been produced by the 
(3x + 1)/2 algorithm, with, of course, a finite number of bits for the seed. 
The inverse algorithm, described in ref. 2, will give the successive bits of the 
seed starting from the one with the lowest weight. If the seed has N bits, 
then after N steps the algorithm will indicate that we have exhausted all the 
significant bits and, correctly, will indicate zero for the next ones. This is 
a good example to exhibit the importance of an a priori information in 
Bayes' theorem. Not only must we be warned of the possible use of a deter- 
ministic algorithm, but we must know the rules of this algorithm to be able 
to decipher the subtle information contained in the parity sequence. 

On the other hand, computer experiments suggest that, as long as the 
iterate is bigger than one, the deterministic sequence cannot be distinguished 
from a random one (obtained by coin tossing) provided, of course, we 
are not alerted to the possibility of a production by the (3x + 1)/2 game 
(see Section 4). For example, the number of iterates needed to reach 1 
(in the deterministic game) and of random steps (in the random walk of 
U, = Log2 x, )  are equal within a good precision. This means that the odd-  
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even sequence keeps its r andom appearance,  al though a subtle N-point  
correlat ion can distinguish the deterministic or r andom nature of the 
process. 

3. GENERALIZATION TO A TRIFURCATION PROCESS 

We consider the fo l low ing  recurrence: for x,, ~ I~ + let 

x,+~ =x , , / 3  if x , ,modulo  3 = 0  

x,,+t=(llx,,+m~)/3 if x,, modulo  3 = 1 

x,,+l=(12x,,+m2)/3 if x,, modulo  3 = 2 

where 
(ll + m l )  modulo  3 = 0  

(212 + m 2 )  modulo  3 = 0 

(3) 

A last condit ion we require is that Ii and 12 are each not multiples of 3. To  
see why, let us write the number  x,, in ternary digits (using only 0, 1, and 
2). The last digit determines the type of i tera t ion-- labeled 0, 1, or 2. We 
want to be able to use probabilistic arguments.  For  that  to be possible, if 
the second digit, starting from the digit of smallest weight, is taken at 
r andom among  0, 1, 2, we need that  the second iteration must  be a r andom 
event with the three possibilities equally likely. 

Now if the first digit is a zero, the number  can be written 3j. The first 
i teration is of type 0, the first iterate is j, and the next iteration is indeed 
a r andom event ( i f j  is taken at r andom)  with the three probabilit ies equal 
to 1/3. Notice that  we do not consider digits of weight 32 , 3 3 , 3 4 , since they 
do not play any role in the two first iterations. 

Consider  now a number  3]'+ 1 with a first i teration of type 1; the first 
iterate is l~j+(l~ +mr) /3 .  As we have previously stated, (l~ + m l ) / 3  must  
be an integer, say n t. What  is the last digit of l~j+nt? Before giving the 
answer, we consider a number  of type 3j + 2 with a first i teration of type 2 
and a first iterate 12j+ (212 + m2)/3, where 212 + m2 is a multiple of  3, let us 
say n 2. So, our  two iterates after type I or 2 iterations can be written ~r + n. 
If 1 (i.e., l t or  12) is a multiple of  3, the last digit of l j+n is n modulo  3 
irrespective o f t  and the second iteration does not exhibit the three equally 
likely possibilities. So we exclude It and 12 multiple of 3. We must then 
study lj + n modulo  3 and consequently we can begin by taking I modulo  3 
equal to 1 or  2 and we consider the values 0, 1, 2 f o r t  and n. We build now 
Tables I and II. 
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Table I. Va lues  o f  I j+n f o r  1--1 and the 
Three Possible Values of j and n a 

n = 0  n = l  n = 2  

j = O  0 1 2 
j = 1  1 2 0 
j = 2  2 0 1 

All values are taken modulo 3. 

We see that  in both cases ( l =  1 and 1= 2) and for all possible values 
of n, in each column (i.e., for the three possible values of the second digit) 
we obtain the three possible types for the second iteration. 

We see consequently that  we can also extend to the "trifurcation" case 
the bijection theorem obtained in refs. 2, 8, and 9 for the (3x + 1 )/2 bifurca- 
tion problem. Our  theorem is as follows: 

Theorem.  There is a bijection between the 3 k numbers  with k 
ternary digits and the 3 k possible sequences of k iterations. 

Let us give an example with k = 2 and tl = 4, ml = --1, 12 = 5, m z  = 2,  

and consequently n~ = 1 and n 2 = 4 .  Tables I and II  allow us to find the 
types of the two first iterates for all two-digit numbers.  For  example,  what  
are the two first iterates for the number  21 (7 in decimal system)? The  first 
is obviously I, and l~ modulo  3 = 1, nl = 1, while j =  2. We read the answer 
in Table I; for ! = 1, the column for n = 1, and the third line, for j = 2: The 
second iterate is of type 0 and the number  21 is in bijection with 01 (first 
iterate of type 1, second of type 0). 

We easily obtained the following bijection (the first number  gives the 
two last digits, the second the two types of iterations): 

00 ~ O0 10 ,--* 10 20 ~ 20 

O1 ~ 11 11 *--.21 21 +--~ O1 

0 2 ' - " 1 2  12,-- '02 22*--+22 

Table U. V a l u e s  o f  I j+n f o r  1 = 2  and the 
Three Possible Values of j and n ~ 

n = O  n = l  n = 2  

j = o  o i 2 
j = l  2 o 1 
j = 2  1 2 0 

~ All values are taken modulo 3.  
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and these results can be checked directly. The proof by induction for the 
generalization to k digits is easy and is omitted here. 

In analogy with what has been done in the (3x+  1)/2 problem, we 
now look at the forgetting mechanism of the successive ternary digits 
starting from the least significant one, i.e., the digit of unities. In fact, at the 
beginning of Section 3 we built the rules of the (Ix + m)/3 game to exhibit 
this forgetting mechanism of this last digit. We defined three classes of 
numbers according their value modulo 3 (labeled respectively "0," "1," and 
"2" numbers). If the digit next to the last is taken at random and with 
equal probability among 0, 1, and 2, the first iterate will be a "0," "1," or 
"2" number (with equal probability for these three issues). 

Let us now consider the two last digits. They define nine classes of 
numbers accordingly the value modulo 9 of the number and we consider 
"0," "1," "2,"...,"7," "8" numbers. Let us consider, for example, "0" 
numbers written 9j. The first iterate is 3j, which can be a "0" number 
if j = 0 , 3 , 6 , 9  .... or a "3" number if j = 1 , 4 , 7  .... or a "6" number if 
j = 2, 5, 8 ..... We write "0" ~ "0" "3" "6" with equal probability. 

The matrix M*(L J) takes the following form: 

M*(L J) = 

J = 0  J = l  J = 2  J = 3  J = 4  J = 5  J = 6  J = 7  J = 8  

1/3 1/3 1/3 I=-0  
I = 1  
I = 2  
I = 3  
1 = 4  
I = 5  
1 = 6  
I = 7  
I = 8  

1/3 1/3 1/3 
1/3 !/3 1/3 
1/3 1/3 1/3 

1/3 1/3 1/3 
1/3 1/3 1/3 

1/3 1/3 1/3 
1/3 1/3 1/3 

1/3 1/3 1/3 

Now, to see what happens to an " I"  number after two iterates (where 
I t  {0 ..... 8}), we just have to square M*. From the structure of M *  as 
given above, it is easily found that 

(M*)  2 (/, 2) = 1/9 VL 2 

and the two last digits are forgotten after two iterations. The property 
holds for an arbitrary number of digits. N iterations erase N digits. In strict 
analogy with what has been done for the (3x + ! )/2 problem, we state the 
following theorem. For e in the set A* = {0, 1, 2 ..... 3 k - 1 } (which will play 
the role of the previous A,), we consider the set S* consisting of 3* integers 
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of 2k ternary digits given by 3kj+ct,  where j runs over all elements of A~'. 
Consequently all elements of S* have the same k last ternary digits. 

T h e o r e m .  (i) For  each ct c A * ,  after k iterations of the recurrence 
(3) on the elements of S* the last k ternary digits of the resulting 3 k 
integers form a complete set of elements A*. 

(ii) The 3kx 3 k matrix M*k has 

( M ~ k )  k : 3-kJ3k 

where J3 k is the 3kx 3 k matrix with all entries equal to 1. 

The  proof  is similar to that  for the bifurcation problem. Having  the 
same last k digits, the sequence is the same for all numbers.  We call respec- 
tively U and D the numbers  of (lj x + m ~ )/3 and (12 x + rn2)/3 iterations. Let 
fl be the kth iterate of 0t, so that  iterate for 3kj+ Ct is fl + ! v D. , l  2J" We can 
again forget fl (which will introduce a simple cyclic permuta t ion)  and we 
show that u o. 3 g l~12j modulo  gives all the elements of A~'. Considering the 

lll2j and l~1~ (with j>l) have the same possibility that two numbers  u o. 
value modulo  3 k, we write 

Consequently 

U D "  U D  1,12j-r+3kJ; lll21=r+3kL 

/~lf(j-l)=3k(j-L) 

and since Ii and 12 are not multiple of 3, the factor 3 k must be present in 
j - l ,  which is impossible since l = 0  is the min imum and j = 3  k -  1 the 
maximum.  

4. COMPUTER S I M U L A T I O N S  

We present now the simulations showing the possibility of describing 
by a r andom walk the evolution of an ensemble of seeds. We proceed as 
follows. A certain number  of seeds (here 10 5) is selected randomly with a 
uniform probabil i ty among  the 10 7 numbers  ranging from 10 9 -  (1/2) 10 7 
to 1 0 9 - t  - (1/2)107 . For  these numbers  the deterministic i terations are per- 
formed. F rom these "experiments" we deduce two types of curves: 

(u.) = ( log  2 x.(I) ) for the bifurcation case 

( u .  > = (log3 x.(I)) for the trifurcation case 

~.~= < [u.(I)- <..>32> 

where I refers to the number  of the seed. 
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These quantities are compared with the "theoretical" curves of the 
theory of random walks: 

(u , , )  = ( U o ) - n m  

cr n = n a  2 

where 

m = (1/2) - (1/2)(1og2 3 - 1 ) 

a 2 = (1/2)( - 1 + m)'- + (1/2)(log2 3 - 1 + rn) 2 

for the (3x + 1)/2 problem, and 

m = (1/3) - (1/3)[log3 l~ 12 - 2]  

o '2= ( 1 / 3 ) ( -  1 + m )  2 + (1/3)(log 3 Ii - 1 + m ) 2 +  (1/3)(iog3 12-  1 + m )  2 

for the trifurcation problem. 
Notice that the average value of the step is - m .  
Figures 1 and 2 show the results, respectively, for the bifurcation and 

trifurcation problems. The straight lines are computed with the above 
values and describe the random walk. The points are the "experimental 
points" and describe the deterministic game. The agreement is excellent up 
to values of n (the number  of iterations) of the order of 50-60. 

An interesting thing to know is how large the number  of iterations 
could be before the random walk model breaks down. Roughly speaking, 
for initial seeds centered around M the cycle is reached after k steps such 
that Log_, M -  k m  = 0, where m has been given above. Consequently for the 
(3x + 1 )/2 problem we conjecture for very large M a validity of the random 
walk picture for m -  ~ Log2 M iterations. For  the experiments shown Fig. 1, 
Log,_ M =  29.9 and this calculus give 147 iterations. Nevertheless, the 
experimental curve show a breaking at a smaller value (typically 100 or 
even less if we consider the mean deviation). The explanation is indeed in 
the diffusion process: before the initial mean value of u,  has reached 
zero a sizable amount  of iterated numbers have reached the cycle. With 
m = 0.2075 and tr = 0.7925, after 100 iterations, U o -  n m -  x / ~  tr ~- O. We 
must consider gi:eater seeds to obtain the asymptotic formula 4.82 Log2 M 
for seeds peaked around the value M. 

In the same way a sizable amount  of iterated numbers have reached 
the fixed point 1 and the cycle 23, 53, 123, 41, 95, 221, 515, 1201, 801,267, 
89, 207, 69, 23 .... in the trifurcation. 
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The existence of more than one cycle has been also found in the 
(3x + m)/2 (with m :/: 1 ) bifurcation process. It~ 

Another,  more detailed check consists in compar ing the dis tr ibut ion 
density of u,,(I) with the Gauss ian  defined by ( u n )  (mean value) and na 2 
(variance), which describes the random walk for large n. Figures 3 and 4 
show the comparison for the same experiments as those used to obta in  
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Fig. I. Bifurcation problem: Average value (un~ and mean squared deviation (~n'- as a 
function of n. The straight lines are given by the random walk approach. The points are 
"experimental" as given by the deterministic game. Notice the influence of the cycle for large 
n (of order 70). 
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Figs. 1 and  2. Here ,  up  to the  va lue  n = 40, where  we are  still far f rom the 

cycles, the a g r e e m e n t  is excel lent ,  whi le  for  n = 55 we see tha t  the  effect o f  

the cycle { 1, 2} becomes  impor t an t .  

5. CONCLUSION 

First ,  a b o u t  the (3x  + 1)/2 con jec tu re  itself this pape r  does  no t  present  

any  real ly new mater ia l .  T h e  genera l i za t ion  of  the b i fu rca t ion  p r o b l e m  to 

the t r i furca t ion  p r o b l e m  s imply  shows  tha t  s o m e t i m e s  we can  have  m a n y  
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Fig. 2. The trifurcation problem: / t = 2, m~ = 1, 12 = 7, m 2 = -2 ;  curves as for Fig. 1. 
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Fig. 4. The densi ty d is t r ibut ion for the same exper iments  as in Fig. 2. The vertical dot ted 
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cycles plus eventually a fixed point. These cycles involve rather small 
numbers; for example, the cycle exhibited in the trifurcation problem of 
Figs. 2 and 4 has 23 as smallest and 1201 as largest number. But, of course, 
nothing precludes the existence of cycles containing large numbers. For the 
case treated in Figs. 2 and 4, a systematic research of the cycles has been 
conducted until 107 with no other cycle found and very likely we will have 
to go to much higher numbers to find the next one-- i f  any. 

Second, from a statistical point of view we saw, through computer 
experiments, that the sequence of parities (for a bifurcation problem) or the 
nature of iteration (0, 1, 2) in the trifurcation problem exhibits all the 
properties of random sequences--except that if we know that the initial 
seed has at most N digits and if we know the rules for the iteration, then 
we can recognize the nature of a sequence longer than N. 

Still, from the statistical point of view we can view the sequence of 
iterations as a succession of "collisions" where the fate of the particle 
(number) is decided by the last digit. We need to know the number with 
an extremely great precision in the same way as in a collision we need to 
know with an extreme precision the impact parameter to know if the par- 
ticle will be deflected to the right or to the left. The computer simulations 
justify the use of a random treatment. The diffusion process exhibited in 
Figs. 3 and 4 gives the behavior of a "particle" (number), the position of 
which is initially known within an accuracy of (log2 109 -- log2 0.995 x 109)/ 

log2 109 = 2.4 x 10-4, if we consider the interval in which the starting Uo are 
scattered. 

The analogy with physics can be pushed further. The treatment of very 
large numbers is equivalent to a classical treatment where the quantum 
effects (in our game the fact that we must stay with integers) are negligible. 
But for low numbers cycles can appear stopping the diffusion process and 
bringing the process to a stationary one. But we should not push this 
analogy too far. 

An interesting matter is to know if probabilistic arguments and 
computer simulations can help to understand the absence of cycles. A priori 
one is tempted to answer no and that the problem of cycles is strictly an 
arithmetic problem. But obviously, if we want to consider the possibility of 
cycles for a seed with, say, 100 bits we cannot proceed to a systematic 
search even with massively parallel supercomputers. But we can certainly 
sample some of these large numbers and follow the iterates. It may give 
some idea of an upper limit of the number of cycles for seeds smaller than 
a given (very large) number and also on the size of these cycles. Finally, a 
more sophisticated computer approach, going beyond an exhaustive search 
for successive integers, is needed. 
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